.. _`Simulated Annealing Parameter Search`: .. _`org.sysess.sympathy.machinelearning.sim_anneal_parsearch`: Simulated Annealing Parameter Search ```````````````````````````````````` .. image:: annealing_hyperparam.svg :width: 48 Uses simulated annealing to find the optimal parameters by considering a hyper cube of all possible indices to the given parameter table. Each column of the parameter table corresponds to one axis of this cube with a range corresponding to the non-masked rows of the parameter table. The radius for the annealing process assumes that all axes have unit length regardless of the number of non-masked rows. This node should be considered _experimental_ and may change in the future Definition :::::::::: Input ports ........... **in-model** model in-model **parameter space** table param-space **X** table X **Y** table Y **cross-validation** 0 - 1, [(table,table)] cross-validation Output ports ............ **results** table results **parameters** table parameters **out-model** model out-model Configuration ............. **Cooling method** (cooling) Method for lowering temperature **Cooling argument** (cooling_arg) Argument A to cooling method. Exponential: T=A^t Linear ignores A Logarithmic: T=A/log(1+t) **Cross validation splits** (cv) Number of fold in the default K-Fold cross validation. Ignored when cross-validation port is given **iterations** (n_iter) Number of randomized searches done Implementation .............. .. automodule:: node_paramsearch :noindex: .. class:: ParameterSearch_SimulatedAnnealing :noindex: